
Beginners Notes

My LinkedIn Profile – Happy to connect with you !

https://www.linkedin.com/in/mukeshkala/

https://www.linkedin.com/in/mukeshkala/

https://www.youtube.com/playlist?list=PLEYSwx3duQ2BWORdGXiaAl63di3hKmWDI

Click here for playlist

For Better Understanding

1. Watch the Step-by-Step videos.

2. Open Editor and Practice along.

3. Complete the assignments

https://www.youtube.com/playlist?list=PLEYSwx3duQ2BWORdGXiaAl63di3hKmWDI

Video Links :

https://youtu.be/-gNyDVDNrzk?si=fpH23bNdUuV2PAEW

https://youtu.be/_xgNOfbEiz4?si=4rK7yZYRvrEVKX5Z

Chapter 1 : Introduction and Setup with VS code

https://youtu.be/-gNyDVDNrzk?si=fpH23bNdUuV2PAEW
https://youtu.be/_xgNOfbEiz4?si=4rK7yZYRvrEVKX5Z

Tutorials by Mukesh Kala

Introduction to Python

• Python was created by Guido van Rossum and first released in 1991.
• The language was designed to emphasize code readability and simplicity.
• Python's name is derived from the British comedy series "Monty Python's Flying Circus," reflecting its

creator's aim to make coding fun.

Key Features:

• Easy to Read, Write, and Learn: Python has a simple syntax similar to English, which makes it easy to
read and understand.

• Interpreted Language: Python code is executed line by line, which makes debugging easier.

• Dynamically Typed: You don’t need to declare the type of variable because Python automatically
assigns the data type during execution.

• Versatile: Python can be used for web development, data science, artificial intelligence, machine
learning, automation, and more.

• Extensive Standard Library: Python has a vast standard library that includes modules and packages for
various tasks.

• Community Support: Python has a large and active community, providing a wealth of resources and
libraries.

Tutorials by Mukesh Kala

Why Python is Popular

• Readability and Simplicity: Python’s syntax is clean and easy to
understand, making it an excellent choice for beginners.

• Versatility: Python’s ability to handle various tasks makes it a preferred
language for many domains.

• Rich Ecosystem: Python’s ecosystem includes numerous frameworks and
libraries, such as Django for web development, TensorFlow for machine
learning, and Pandas for data analysis.

• Community and Support: The large community contributes to a rich
repository of tutorials, guides, and third-party modules, making it easy to
find support and resources.

Tutorials by Mukesh Kala

Install Python

1. Download Python Installer:
• Go to the official Python website https://www.python.org/
• Click on the "Downloads" tab and select "Download Python 3.x.x".

2. Run the Installer:
• Locate the downloaded installer in your system and double-click to run

it.
• Check the box that says "Add Python 3.x to PATH".
• Click "Install Now" for a standard installation.

3. Verify Installation:
• Open Command Prompt.
• Type python --version and press Enter. You should see the Python

version displayed.
https://youtu.be/-gNyDVDNrzk?si=okdf3j22FP0d1QIt

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/Uwg1FP5bm-U?si=juLc5xLfTp2-_Nzp

Chapter 2 : Set up Python | Activate Virtual Environment

https://youtu.be/Uwg1FP5bm-U?si=juLc5xLfTp2-_Nzp

Tutorials by Mukesh Kala

Setting up the Environment

Introduction to IDEs:

Integrated Development Environments (IDEs) provide comprehensive facilities to programmers for software development, including a code editor,
debugger, and build automation tools.

PyCharm

Installation: Download from JetBrains.
Features: Smart code navigation, code refactoring, built-in
terminal, version control, and support for web frameworks.

VSCode (Visual Studio Code)

Installation: Download from Visual Studio Code.
Features: Lightweight, extensible through plugins, integrated terminal,
version control integration, and IntelliSense.

Jupyter Notebooks

Installation: Install via Anaconda Distribution: Download from Anaconda.
Or install using pip: pip install notebook.
Features: Interactive computing environment, support for live code,
visualizations, and narrative text.

https://www.jetbrains.com/pycharm/download/
https://code.visualstudio.com/

Tutorials by Mukesh Kala

Install Vs Code

VSCode (Visual Studio Code)

Installation: Download from Visual Studio Code.
Features: Lightweight, extensible through plugins, integrated terminal,
version control integration, and IntelliSense.

https://youtu.be/_xgNOfbEiz4?si=GnxAKxSIO4yWKFj4

https://code.visualstudio.com/

Tutorials by Mukesh Kala

Why Workspace in VS Code

• Open VS Code

• Launch Visual Studio Code on your machine.

• Create a New Workspace

• Click on File > Open Folder

• Navigate to the directory where you want to
create your project and

• Click on New Folder.Name the folder (e.g.,
MyPythonProject) and click Open.

Creating a workspace in Visual Studio Code (VS Code) isn't strictly necessary for running
Python scripts, but it offers several benefits that can enhance your development
experience.

Organized Project Structure: keep all your project files and folders organized in one
place and multiple folders in a single workspace,

Consistent Configuration: You can define workspace-specific settings that override the
default settings, such as editor preferences, Python interpreter paths, and formatting
rules.
You can configure extensions to behave differently for different projects, enhancing
productivity.

Environment Management: Workspaces help in managing virtual environments for
specific projects, ensuring that each project uses its own dependencies without conflicts.

Version Control Integration: Workspaces integrate seamlessly with version control
systems like Git,

Extensions and Customization: Extensions can be configured to work specifically for your
workspace, providing language support, linters, formatters, and more tailored to your
project’s needs.

Tutorials by Mukesh Kala

Virtual environment in Python

• A virtual environment in Python is a self-contained directory that contains a Python installation for a particular version of Python, plus a
number of additional packages.

• It’s a tool to keep dependencies required by different projects in separate places, by creating virtual Python environments for them.

• This is one of the most important tools that most Python developers use.

• A virtual environment isolates the dependencies for different projects. This means that the packages installed in one
environment won’t affect other projects.

• Avoid Conflicts: Different projects might require different versions of the same package. By using virtual environments, you can
manage these dependencies separately and avoid version conflicts.

• Using a virtual environment ensures that the same dependencies (and their versions) are used every time the project is set up.
This is crucial for consistency, especially when working in teams or deploying applications.

• You can easily replicate the environment by sharing a requirements.txt file, which lists all the packages and their versions.
Anyone can create the same environment by installing the listed packages.

• Each project can have its own environment tailored to its specific needs without affecting the global Python installation or other
projects.

• Virtual environments make it easy to set up and manage the Python environment for different projects.

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/qHAHb7TpEyo?si=rjM7_TGNYpXBAbVu

Chapter 3 : Comments and Variables

https://youtu.be/qHAHb7TpEyo?si=rjM7_TGNYpXBAbVu

Tutorials by Mukesh Kala

Comments: Single-Line and Multi-Line

Single-Line Comments

Use the # symbol to add comments.

This is a single-line comment

print("Hello, World!") # This is an inline comment

Multi-Line Comments

Use triple quotes (''' or """) for multi-line comments.

"""

This is a multi-line comment.

It spans multiple lines.

"""

print("Hello, World!")

Tutorials by Mukesh Kala

Declaring and Initializing Variables, Naming Conventions

Declaring and Initializing Variables:
No need to declare variables explicitly; just assign a value.

message = "Hello, World!"
number = 42
pi = 3.14159

Variable Naming Conventions:
• Use meaningful names.
• Start with a letter or underscore, followed by letters, digits, or underscores.
• Case-sensitive.

user_name = "Alice"
user_age = 30
_hidden_variable = "This is hidden"

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/-pmlJdrYXEc?si=shgHAkPmBSgok492

Chapter 4 : Arithmetic and Assignment Operators

https://youtu.be/-pmlJdrYXEc?si=shgHAkPmBSgok492

Tutorials by Mukesh Kala

Code

Arithmetic operations
a = 10
b = 3

addition = a + b
subtraction = a - b
multiplication = a * b
division = a / b
modulus = a % b
exponentiation = a ** b
floor_division = a // b

print("Addition:", addition)
print("Subtraction:", subtraction)
print("Multiplication:", multiplication)
print("Division:", division)
print("Modulus:", modulus)
print("Exponentiation:", exponentiation)
print("Floor Division:", floor_division)

Assignment operations
x = 5
print("Initial x:", x)
x += 3
print("After x += 3:", x)
x -= 2
print("After x -= 2:", x)
x *= 4
print("After x *= 4:", x)
x /= 3
print("After x /= 3:", x)

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/g_S7VT1dNW4?si=K7WSiM7vUArKISrH

Chapter 4 : Control Structures in Python

https://youtu.be/g_S7VT1dNW4?si=K7WSiM7vUArKISrH

Tutorials by Mukesh Kala

Brief Overview of Control Structures

• Control structures are fundamental concepts in programming that dictate the order in which statements and
instructions are executed.

• They enable programmers to control the flow of execution based on certain conditions or repetitions.

• Common control structures include conditional statements (if, else, elif), loops (for, while), and branching
statements (break, continue).

Importance of Conditionals in Programming:
• Conditional statements allow the program to make decisions and execute

specific code blocks based on whether certain conditions are met.

• They are essential for creating dynamic and responsive programs that can
handle different inputs and situations.

• By using conditionals, you can direct the program's flow, making it more
interactive and capable of solving complex problems.

Tutorials by Mukesh Kala

If Else If and Else

if condition:

 # Code to execute if condition is True

if condition1:

 # Code to execute if condition1 is True

elif condition2:

 # Code to execute if condition2 is True

else:

 # Code to execute if none of the conditions are True

Tutorials by Mukesh Kala

Practical Example: Grading System

score = 85

if score >= 90:

 grade = 'A'

elif score >= 80:

 grade = 'B'

elif score >= 70:

 grade = 'C'

elif score >= 60:

 grade = 'D'

else:

 grade = 'F'

print(f"The grade is {grade}")

Tutorials by Mukesh Kala

Nesting Conditionals

age = 20

citizen = True

if age >= 18:

 if citizen:

 print("Eligible to vote")

 else:

 print("Not a citizen, cannot vote")

else:

 print("Too young to vote")

Tutorials by Mukesh Kala

Best Practices

• Keep conditions simple and readable

• Avoid deep nesting

• Use meaningful variable names

• Comment your code for clarity

Tutorials by Mukesh Kala

Assignment

Write a Python program that checks the temperature and prints appropriate messages.

Conditions:

• If the temperature is above 30, print "It's hot!“

• If the temperature is between 20 and 30, print "It's warm.“

• If the temperature is between 10 and 20, print "It's cool.“

• If the temperature is below 10, print "It's cold!"

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/Xq3VoXrlWLU?si=5M9n4QCqKdtwGDQq

Chapter 5 : Manipulating Strings in Python

https://youtu.be/Xq3VoXrlWLU?si=5M9n4QCqKdtwGDQq

Tutorials by Mukesh Kala

What are strings?

• A string is a sequence of characters.

• Strings are immutable in Python

It means that once a string is created, its content cannot be changed or modified.
Any operation that seems to modify a string will actually create a new string object
rather than altering the original one.

Importance of string manipulation
Essential for text processing, data analysis, web development, and more.

text = "Hello"

text[0] = "h" # This will raise an error

Tutorials by Mukesh Kala

Indexing Strings

• Accessing individual characters using their index.

• Zero-based indexing (first character is at index 0).

text = "Hello, World!"

first_char = text[0] # 'H'

last_char = text[-1] # '!'

Tutorials by Mukesh Kala

Slicing Strings

• Extracting substrings using a range of indices.

• Syntax: string[start:end] (end index is exclusive).

• Step value for advanced slicing: string[start:end:step]

text = "Hello, World!"

hello = text[0:5] # 'Hello'

world = text[7:12] # 'World'

Tutorials by Mukesh Kala

String Methods

• Common methods:upper(), lower(), strip(), replace(), find(), split(), join().

text = " Hello, World! "

uppercase_text = text.upper() # ' HELLO, WORLD! '

stripped_text = text.strip() # 'Hello, World!'

replaced_text = text.replace("World", "Python") # ' Hello, Python! '

Tutorials by Mukesh Kala

Assignments

Given a string text = "The quick brown fox jumps over the lazy dog",

extract and print the following:

• The word "quick“

• The word "lazy“

• The phrase "brown fox jumps"

Tutorials by Mukesh Kala

Code from Video

String methods

text = " Hello, World! "

Using string methods

uppercase_text = text.upper()

lowercase_text = text.lower()

stripped_text = text.strip()

replaced_text = text.replace("World", "Python")

found_index = text.find("World")

split_text = text.split(",")

joined_text = " ".join(split_text)

print(f"Uppercase: {uppercase_text}")

print(f"Lowercase: {lowercase_text}")

print(f"Stripped: {stripped_text}")

print(f"Replaced: {replaced_text}")

print(f"Found index of 'World': {found_index}")

print(f"Split text: {split_text}")

print(f"Joined text: {joined_text}")

Slicing strings

text = "Hello, World!"

Extracting substrings

hello = text[0:5]

world = text[7:12]

reversed_text = text[::-1]

print(f"Substring 'Hello': {hello}")

print(f"Substring 'World': {world}")

print(f"Reversed text: {reversed_text}")

Indexing strings

text = "Hello, World!"

Accessing individual characters

first_char = text[0]

last_char = text[-1]

print(f"First character: {first_char}")

print(f"Last character: {last_char}")

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/2uRYj2iIcZg?si=SFhNrJvfEywunEGj

Chapter 6 : Data Structures - Dictionaries

https://youtu.be/2uRYj2iIcZg?si=SFhNrJvfEywunEGj

Tutorials by Mukesh Kala

Overview of Dictionaries

Definition:
A dictionary in Python is a collection of key-value pairs where each key is unique.
It is similar to a real-life dictionary where you have words (keys) and their definitions (values).

Syntax:
Dictionaries are defined using curly braces {} with key-value pairs separated by colons

student = {

 "name": "Alice",

 "age": 25,

 "courses": ["Math", "Computer Science"]

}

Tutorials by Mukesh Kala

Characteristics

Keys:

Must be unique and immutable (e.g., strings, numbers, tuples).

Keys are used to access values in the dictionary.

Values:

Can be of any data type (strings, numbers, lists, other dictionaries, etc.).

Values can be repeated, but the keys must be unique.

Mutable:

Dictionaries are mutable, meaning you can change, add, or remove key-value pairs after the dictionary is

created.

Unordered:

In Python versions before 3.7, dictionaries were unordered collections. From Python 3.7 onwards, dictionaries

maintain the insertion order of keys.

Tutorials by Mukesh Kala

Creating and Reading Dictionaries

student = {

 "name": "Alice",

 "age": 25,

 "courses": ["Math", "Computer Science"]

}

name = student["name"]

age = student["age"]

Tutorials by Mukesh Kala

Modifying Dictionaries

student["age"] = 26 # Update value

student["grade"] = "A" # Add new key-value pair

Adding or Updating Key-Value Pairs

Removing Key-Value Pairs

del student["courses"]

age = student.pop("age")

Tutorials by Mukesh Kala

Example Code

Creating a dictionary

student = {

 "name": "Alice",

 "age": 25,

 "courses": ["Math", "Computer Science"]

}

Accessing values

print(student["name"]) # Output: Alice

print(student.get("age")) # Output: 25

Adding and updating key-value pairs

student["age"] = 26 # Update existing key

student["grade"] = "A" # Add new key-value pair

Removing key-value pairs

del student["courses"]

Checking if a key exists

has_grade = "grade" in student

print(f"Grade key exists: {has_grade}") # Output: Grade key exists: True

Display the updated dictionary

print(student)

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/gkFWi7XDtOM?si=pNgLXiS_bBMHJwlH

Chapter 7 : Functions in Python

https://youtu.be/gkFWi7XDtOM?si=pNgLXiS_bBMHJwlH

Tutorials by Mukesh Kala

What are functions?

• Functions are reusable blocks of code designed to perform a specific task.
• Think of them as mini-programs within your larger program.
• Reusable blocks of code designed to perform a specific task.
• Improve modularity and code reusability.

Importance of functions in programming

• Modularity: Breaking down a program into smaller, manageable parts (functions).
• Reusability: Functions can be called multiple times within a program, reducing code duplication.
• Clear Structure: Functions help organize code into logical sections, making it more readable.
• Self-Documenting: Well-named functions describe what they do, which makes the code easier to

understand without extensive comments.

Tutorials by Mukesh Kala

Defining Functions

• Functions are defined using the def keyword.

• They can take arguments and return values.

• Functions can have different types of arguments: positional, keyword, default, and variable-length.

def function_name(parameters):
 # Function body
 return value

Tutorials by Mukesh Kala

Scope and Lifetime

• Local and global variables

• The scope of a variable determines where it can be accessed.

• Lifetime of a variable is the duration for which it exists in memory.

Tutorials by Mukesh Kala

Defining Functions (Explanation)

Defining a simple function

def greet(name):

 return f"Hello, {name}!"

print(greet("Alice")) # Output: Hello, Alice!

• The f in f"Hello, {name}!" signifies that the string is an f-string, a feature that allows for easy and readable string

formatting.

• F-strings evaluate expressions inside curly braces {} and embed the results into the string.

• They offer a concise and efficient way to create formatted strings in Python.

Tutorials by Mukesh Kala

Function Arguments (Code from Video)

Function with positional and default arguments

def add(a, b=10):

 return a + b

print(add(5)) # Output: 15

print(add(5, 20)) # Output: 25

Function with variable-length arguments

def multiply(*args):

 result = 1

 for num in args:

 result *= num

 return result

print(multiply(1, 2, 3, 4)) # Output: 24

Function with keyword arguments

def display_info(**kwargs):

 for key, value in kwargs.items():

 print(f"{key}: {value}")

display_info(name="Alice", age=25, city="New York")

Tutorials by Mukesh Kala

Scope and Lifetime

Scope and lifetime of variables

x = 10 # Global variable

def example():

 x = 5 # Local variable

 print("Inside function:", x)

example()

print("Outside function:", x)

Tutorials by Mukesh Kala

Practical Code from Video

def is_even(n):

 return n % 2 == 0

print(is_even(4)) # Output: True

print(is_even(5)) # Output: False

def convert_temperature(celsius):

 return (celsius * 9/5) + 32

print(convert_temperature(0)) # Output: 32.0

print(convert_temperature(100)) # Output: 212.0

def max_of_three(a, b, c):

 return max(a, b, c)

Test the function

print(max_of_three(3, 7, 5)) # Output: 7

Tutorials by Mukesh Kala

Assignment

Function to Calculate the Area of a Circle:

Write a function named circle_area that takes one argument radius and returns the area of a circle.

Use the formula: area = π * radius^2 (use 3.14 for π).

def convert_temperature(celsius):

 return (celsius * 9/5) + 32

print(convert_temperature(0)) # Output: 32.0

print(convert_temperature(100)) # Output: 212.0

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/m1XSUfKRJOk?si=PVHjYF7KhVl5iGUv

Chapter 8 : File Handling

https://youtu.be/m1XSUfKRJOk?si=PVHjYF7KhVl5iGUv

Tutorials by Mukesh Kala

What is File Handling?

• File handling refers to the process of creating, opening, reading, writing, and
closing files in a program.

• It is a crucial skill for any programmer, as it allows you to work with external
data and store results persistently..

Importance of File handling

• Working with files enables programs to save data, process external data
sources, generate reports, and much more.

• Python provides a built-in way to handle files using simple and intuitive
commands.

Tutorials by Mukesh Kala

Opening Files with open()

• The open() function is used to open a file in Python.

• It requires at least one argument: the file name (and optionally, the mode in which to open the file).

file = open("filename.txt", "mode")

Modes:

• 'r': Read mode (default). Opens the file for reading.

• 'w': Write mode. Opens the file for writing (creates a new file or truncates an existing file)

• 'a': Append mode. Opens the file for appending (writes data at the end of the file).

• 'b': Binary mode. Used with 'r', 'w', or 'a' to work with binary files.

Tutorials by Mukesh Kala

Reading Files

read(): Reads the entire content of the file

content = file.read()

readline(): Reads one line at a time.

line = file.readline()

readlines(): Reads all lines in the file and returns them as a list.

lines = file.readlines()

Tutorials by Mukesh Kala

Writing to Files

write(): Writes a string to the file.

file.write("Hello, World!\n")

writelines(): Writes a list of strings to the file.

file.writelines(["Hello, World!\n", "Welcome to Python file handling.\n"])

Tutorials by Mukesh Kala

Using with Statement for File Handling

The with statement ensures that files are properly closed after their suite finishes, even if an exception is raised.

with open("filename.txt", "mode") as file:
Perform file operations

The file is automatically closed when the block of code inside with is exited.

with open("example.txt", "r") as file:
content = file.read()
print(content)

No need to explicitly close the file

Tutorials by Mukesh Kala

Code from video

Create a text file named input.txt with the following

content:

Hello, this is a test file.

It contains multiple lines of text.

Python file handling is easy and powerful.

def process_file(input_file, output_file):

 try:

 with open(input_file, "r") as file:

 lines = file.readlines()

 line_count = len(lines)

 word_count = sum(len(line.split()) for line in lines)

 with open(output_file, "w") as file:

 file.write(f"Line count: {line_count}\n")

 file.write(f"Word count: {word_count}\n")

 print("File processed successfully.")

 except FileNotFoundError:

 print(f"Error: The file {input_file} was not found.")

 except IOError:

 print(f"Error: An error occurred while processing the file.")

Run the function

process_file("input.txt", "output.txt")

• Read the file: The program reads all lines from input.txt.

• Process the file: It counts the number of lines and words.

• Write the results: The results are written to output.txt.

Tutorials by Mukesh Kala

Assignment

Write a program that reads a file containing Your Name

and

writes “Welcome Mukesh Kala” to a new file.

Input file example : Mukesh Kala

Output file example : Welcome Mukesh Kala

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/iryi9jRODd4?si=mI3L3tgb2xh7wQYd

https://youtu.be/ZsXISmVE2Mc?si=d5SrXyXKsVO-DBkf

Chapter 9 : Exceptionn Handling and Exceptions with raise

https://youtu.be/iryi9jRODd4?si=mI3L3tgb2xh7wQYd
https://youtu.be/ZsXISmVE2Mc?si=d5SrXyXKsVO-DBkf

Tutorials by Mukesh Kala

What is Exception Handling?

What is Exception Handling?
• Exception handling is the process of responding to and managing Exceptions or exceptional conditions that occur

during the execution of a program.

• It ensures that the program can handle unexpected situations gracefully, preventing crashes and providing
meaningful feedback to the user.

Why is Exception Handling Important?
• Exceptions are inevitable in any program, especially when dealing with user inputs, file operations, or network

requests.

• Proper Exception handling improves the robustness of the application by allowing it to manage and respond to
Exceptions effectively, enhancing the overall user experience.

Tutorials by Mukesh Kala

Basic Exception Handling with try and except

• try and except blocks are used to catch and handle exceptions (Exceptions) that occur during the execution of a program.

• The code that might raise an exception is placed inside the try block, and the code that handles the exception is placed inside
the except block.

try:
Code that may raise an exception

except ExceptionType:
Code to handle the exception

try:

result = 10 / 0 # This will raise a ZeroDivisionException

except ZeroDivisionException:

print("Exception: Division by zero is not allowed.")

Tutorials by Mukesh Kala

Using else and finally Blocks

• else block: Executes if the try block does not raise any exceptions.finally block: Executes regardless of

whether an exception was raised or not.

• It is often used for cleanup actions (e.g., closing files or releasing resources).

try:
Code that may raise an exception

except ExceptionType:
Code to handle the exception

else:
Code to execute if no exception occurs

finally:
Code to execute no matter what (optional)

try:

result = 10 / 2

except ZeroDivisionException:

print("Exception: Division by zero is not allowed.")

else:

print(f"Result: {result}")

finally:

print("Execution completed.")

Tutorials by Mukesh Kala

Raising Exceptions with raise

• The raise statement allows you to raise an exception manually if a certain condition is met.

• This is useful for enforcing certain conditions in your code or when a specific Exception condition needs to

be flagged.

raise ExceptionType("Custom Exception
message")

def divide(a, b):

if b == 0:

raise ValueException("Cannot divide by zero.")

return a / b

try:

result = divide(10, 0)

except ValueException as e:

print(f"Exception: {e}")

Tutorials by Mukesh Kala

Code from Video

def add(a, b):

 return a + b

def subtract(a, b):

 return a - b

def multiply(a, b):

 return a * b

def divide(a, b):

 if b == 0:

 raise ZeroDivisionException("Cannot divide by zero.")

 return a / b

def calculator():

 try:

 a = float(input("Enter the first number: "))

 b = float(input("Enter the second number: "))

 operation = input("Enter the operation (+, -, *, /): ")

 if operation == "+":

 result = add(a, b)

 elif operation == "-":

 result = subtract(a, b)

 elif operation == "*":

 result = multiply(a, b)

 elif operation == "/":

 result = divide(a, b)

 else:

 raise ValueException("Invalid operation.")

 print(f"The result is: {result}")

 except ValueException as ve:

 print(f"Exception: {ve}")

 except ZeroDivisionException as zde:

 print(f"Exception: {zde}")

 finally:

 print("Thank you for using the calculator.")

Run the calculator program

calculator()

Tutorials by Mukesh Kala

Code from Video – Calculator Code

def calculator():

 try:

 a = float(input("Enter the first number: "))

 b = float(input("Enter the second number: "))

 operation = input("Enter the operation (+, -, *, /): ")

 if operation == "+":

 result = add(a, b)

 elif operation == "-":

 result = subtract(a, b)

 elif operation == "*":

 result = multiply(a, b)

 elif operation == "/":

 result = divide(a, b)

 else:

 raise ValueException("Invalid operation.")

 print(f"The result is: {result}")

 except ValueException as ve:

 print(f"Exception: {ve}")

 except ZeroDivisionException as zde:

 print(f"Exception: {zde}")

 finally:

 print("Thank you for using the calculator.")

Run the calculator program

calculator()

Tutorials by Mukesh Kala

Assignment

Re Create the Same Calculator Function

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/oYg-mLf0cL4?si=TTsSlz4LunrNQ4Fi

Chapter 10 : Modules in Python

https://youtu.be/oYg-mLf0cL4?si=TTsSlz4LunrNQ4Fi

Tutorials by Mukesh Kala

What are Modules?

• A module is a file containing Python definitions and statements.

• The file name is the module name with the suffix .py added.

• Modules allow you to organize your code into manageable sections.

Tutorials by Mukesh Kala

Why are Modules Important?

• Modularity: Modules and packages promote modular programming, where you can divide your code into
separate components that can be developed, tested, and maintained independently.

• Reusability: Code written in modules can be reused across different projects, saving time and reducing errors.

• Maintainability: Organizing your code into modules and packages makes it easier to maintain and debug, as
related functions and classes are grouped together.

Tutorials by Mukesh Kala

Creating and Importing Modules

A module is simply a Python file (.py) that contains definitions, functions, classes, and executable code.

Creating a Module:

• To create a module, you write your Python code in a file and save it with a .py extension.

• Example: Create a file named mymodule.py with the following content

mymodule.py

def greet(name):

return f"Hello, {name}!"

def add(a, b):

return a + b

Importing a Module:

To use the functions and variables defined in a module, you need to import the module into your script.

import mymodule

print(mymodule.greet("Alice"))

print(mymodule.add(5, 10))

Tutorials by Mukesh Kala

Import Variants

Importing Specific Functions : You can import specific functions or variables from a module.

from mymodule import greet

print(greet("Alice"))

Using Aliases: Modules can be imported with an alias to shorten the name

import mymodule as mm

print(mm.greet("Alice"))

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/aZx8U3qlBiQ?si=VAcjeGQes1H4gkHI

Chapter 10 : Built-In Modules in Python

https://youtu.be/aZx8U3qlBiQ?si=VAcjeGQes1H4gkHI

Tutorials by Mukesh Kala

Using Built-in Modules

Python comes with a rich set of built-in modules that provide various functionalities out of the box.

import math

print(math.sqrt(16)) # Output: 4.0

print(math.pi) # Output: 3.141592653589793

math: Provides mathematical functions

random: Generates random numbers and performs random operations

import random

print(random.randint(1, 10)) # Random integer between 1 and 10

print(random.choice(['apple', 'banana', 'cherry'])) # Random choice from a list

os: Provides functions to interact with the operating system

import os

print(os.getcwd()) # Get the current working directory

os.mkdir('new_folder') # Create a new directory

Tutorials by Mukesh Kala

Assignment

Read | Utilize the Built In Modules | Comment

Tutorials by Mukesh Kala

Video Links :

https://youtu.be/UTRbC2LJbDk?si=SV8EWwIZMJrZkYe3

Chapter 11 : Password Generator Project

https://youtu.be/UTRbC2LJbDk?si=SV8EWwIZMJrZkYe3

Tutorials by Mukesh Kala

Introduction

Why Password Generators?
• A strong password is essential for online security.
• Manual creation of passwords can be time-consuming and prone to errors.
• A password generator automates this process, ensuring randomness and strength.

What You'll Learn in This Project:
• Using Python's built-in modules (random and string).
• String manipulation and loops.
• Writing and testing a function.

Tutorials by Mukesh Kala

Codes

Step 1: Import Necessary Modules

Why Use Modules?
•The string module provides easy access to characters like letters, digits, and punctuation.
•The random module helps in generating randomness.

Step 2: Define the Character Set

•Passwords are typically a mix of letters, numbers, and special characters.
•The string module provides predefined constants: ascii_letters, digits, and punctuation.

Tutorials by Mukesh Kala

Codes

Step 3: Create the Password Generator Function

• A function encapsulates the logic and makes the code reusable.

• The function will:

• Take the password length as input.

• Randomly select characters from the predefined set.

• Return the generated password.

Step 4: Add Input Handling

• The user should be able to specify the desired password length.

• Validate that the password length is at least 6 (a common security recommendation).

Tutorials by Mukesh Kala

Codes

Step 4: Add Input Handling

• The user should be able to specify the desired password length.

• Validate that the password length is at least 6 (a common security recommendation).

def password_generator():

 print("Welcome to the Password Generator!")

 try:

 length = int(input("Enter the desired password length: "))

 if length < 6:

 print("Password length should be at least 6 characters.")

 else:

 password = generate_password(length)

 print(f"Your generated password is: {password}")

 except ValueError:

 print("Invalid input. Please enter a number.")

Tutorials by Mukesh Kala

Full Code

#import Modules
import string
import random

Define Character Set
characters = string.ascii_letters + string.digits + string.punctuation

#Create Password Generator Function
def generate_password(length=12):
 password = ""
 for i in range(length):
 password+=random.choice(characters)
 return password

Add Input Handling
def password_generator():
 print(".......Welcome to the password generator program by TBMK")
 length = int(input("Provide me the Password Length ?"))
 if length <6:
 print("Password length should be atleast 6 Characters ...")
 else:
 password= generate_password(length)
 print(f"Your Password is : {password}")

Run the Program
password_generator()

Tutorials by Mukesh Kala

Assignment

Add Password Strength Criteria:

• Ensure at least one uppercase letter, one digit, and one special character.

Save Passwords to a File:

• Allow the user to save generated passwords for later use.

Tutorials by Mukesh Kala

Recap

Recap the Key Learnings:
• How to use the random and string modules.
• Writing functions and handling user input.

Assignment:
• Modify the project to add Exception Handling.
• Add Password Strength Criteria: Ensure at least one uppercase letter, one digit, and one special character.
• Save Passwords to a File: Allow the user to save generated passwords for later use.

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Introduction to Python
	Slide 5: Why Python is Popular
	Slide 6: Install Python
	Slide 7
	Slide 8: Setting up the Environment
	Slide 9: Install Vs Code
	Slide 10: Why Workspace in VS Code
	Slide 11: Virtual environment in Python
	Slide 12
	Slide 13: Comments: Single-Line and Multi-Line
	Slide 14: Declaring and Initializing Variables, Naming Conventions
	Slide 15
	Slide 16: Code
	Slide 17
	Slide 18: Brief Overview of Control Structures
	Slide 19: If Else If and Else
	Slide 20: Practical Example: Grading System
	Slide 21: Nesting Conditionals
	Slide 22: Best Practices
	Slide 23: Assignment
	Slide 24
	Slide 25: What are strings?
	Slide 26: Indexing Strings
	Slide 27: Slicing Strings
	Slide 28: String Methods
	Slide 29: Assignments
	Slide 30: Code from Video
	Slide 31
	Slide 32: Overview of Dictionaries
	Slide 33: Characteristics
	Slide 34: Creating and Reading Dictionaries
	Slide 35: Modifying Dictionaries
	Slide 36: Example Code
	Slide 37
	Slide 38: What are functions?
	Slide 39: Defining Functions
	Slide 40: Scope and Lifetime
	Slide 41: Defining Functions (Explanation)
	Slide 42: Function Arguments (Code from Video)
	Slide 43: Scope and Lifetime
	Slide 44: Practical Code from Video
	Slide 45: Assignment
	Slide 46
	Slide 47: What is File Handling?
	Slide 48: Opening Files with open()
	Slide 49: Reading Files
	Slide 50: Writing to Files
	Slide 51: Using with Statement for File Handling
	Slide 52: Code from video
	Slide 53: Assignment
	Slide 54
	Slide 55: What is Exception Handling?
	Slide 56: Basic Exception Handling with try and except
	Slide 57: Using else and finally Blocks
	Slide 58: Raising Exceptions with raise
	Slide 59: Code from Video
	Slide 60: Code from Video – Calculator Code
	Slide 61: Assignment
	Slide 62
	Slide 63: What are Modules?
	Slide 64: Why are Modules Important?
	Slide 65: Creating and Importing Modules
	Slide 66: Import Variants
	Slide 67
	Slide 68: Using Built-in Modules
	Slide 69: Assignment
	Slide 70
	Slide 71: Introduction
	Slide 72: Codes
	Slide 73: Codes
	Slide 74: Codes
	Slide 75: Full Code
	Slide 76: Assignment
	Slide 77: Recap

